
Lecture 25: RSA Encryption

RSA Encryption



Recall: RSA Assumption

We pick two primes uniformly and independently at random
p, q

$← Pn

We define N = p · q
We shall work over the group (Z∗

N ,×), where Z∗
N is the set of

all natural numbers < N that are relatively prime to N, and ×
is integer multiplication mod N

We pick y
$← Z∗

N

Let φ(N) represent the size of the set Z∗
N , which is

(p − 1)(q − 1)
We pick any e ∈ Z∗

φ(N), that is, e is a natural number < φ(N)

and is relatively prime to φ(N)

We give (n,N, e, y) to the adversary A as ask her to find the
e-th root of y , i.e., find x such that xe = y

RSA Assumption. For any computationally bounded adversary,
the above-mentioned problem is hard to solve

RSA Encryption



Recall: Properties

The function xe : Z∗
N → Z∗

N is a bijection for all e such that
gcd(e, φ(N)) = 1

Given (n,N, e, y), where y
$← Z∗

N , it is difficult for any
computationally bounded adversary to compute the e-th root
of y , i.e., the element y1/e

But given d such that e · d = 1 mod φ(N), it is easy to
compute y1/e , because yd = y1/e

Now, think about how we can design a key-agreement scheme using
these properties. Once the key agreement protocol is ready, we can
create a public-key encryption scheme with a one-time pad.

RSA Encryption



Key-Agreement

First, Alice and Bob establish a key that is hidden from the
adversary

Alice Bob

p, q
$← Pn

N = p · q

Pick any e ∈ Z∗
φ(N)r

$← Z∗
N

pk = (n,N, e)

y = r e r̃ = yd
y

Note that r = r̃ and is hidden from an adversary based on the RSA
assumption

RSA Encryption



Public-key Encryption after the Key-Agreement Protocol

Using this key, Alice sends the encryption of m ∈ Z∗
N using the

one-time pad encryption scheme.

Alice Bob

c = m · r m̃ = c · inv(r̃)c

Since we always have r = r̃ , this encryption scheme always decrypts
correctly. Note that inv(r̃) can be computed only by knowing φ(N).

RSA Encryption



Putting the two together: RSA Encryption (First Attempt) I

Alice Bob

p, q
$← Pn

N = p · q

Pick any e ∈ Z∗
φ(N)r

$← Z∗
N

pk = (n,N, e)

y = r e

c = m · r r̃ = yd
(y , c)

m̃ = c · inv(r̃)

RSA Encryption



Putting the two together: RSA Encryption (First Attempt) II

We emphasize that this encryption scheme work only for m ∈ Z∗
N .

In particular, this works for all messages m that have a binary
representation of length less than n-bits because p and q are n-bit
primes.

HOWEVER, THIS SCHEME IS INSECURE

RSA Encryption



Insecurity of the First Attempt I

Let us start with a simpler problem.

Suppose I pick an integer x and give y = x3 to you. Can you
efficiently find the x?

Running for for loop with i ∈ {0, . . . , y} and testing whether
i3 = y or not is an inefficient solution
However, binary search on the domain {0, . . . , y} is an
efficient algorithm
Then why does the RSA assumption that says “computing the
e-th root is difficult if φ(N) is unknown” hold? Answer:
Because we are working over Z∗

N and not Z! “Wrapping
around” due to the modulus operation while cubing kills the
binary search approach.
However, if x is such that xe < N then the modulus operation
does not take effect. So, if x < N1/e then we can find the e-th
root of y !

RSA Encryption



Insecurity of the First Attempt II

Now, let us try to attack the “first attempt” algorithm

Recall that we have c = m · r and y = r e . So, we have
ce = me · r e . Now, note that ce · inv(y) = me · r e · y−1 = me .

So, the adversary can compute ce · inv(y) to obtain me . If
m < N1/e , then the adversary can use binary search to recover
m.

There is another problem! If Alice is encrypting and sending
multiple messages {m1,m2, . . . }, then the eavesdropper can
recover {me

1,m
e
2, . . . }. So, she can find which of these

{me
1,m

e
2, . . . } are identical. In turn, she can find out the

messages in {m1,m2, . . . } that are identical (because
xe : Z∗

N → Z∗
N is a bijection).

How do we fix these attacks?

RSA Encryption



RSA Encryption

Our idea is to pad the message m with some randomness s.
The new message s∥m, with high probability, satisfies
(s∥m)e > N (that is, it wraps around)
How does it satisfy the second attack mentioned above
(Think: Birthday bound)
Let us write down the new encryption scheme for
m ∈ {0, 1}n/2

Encn,N,e(m):
1 Pick r

$← Z∗
N

2 Pick s
$←{0, 1}n/2

3 Compute y = r e , and c = (s∥m) · r
4 Return (y , c)

RSA Encryption



Final Optimized RSA Encryption

Note that masking with r is not helping at all! Let us call s∥m
as the payload. An adversary can obtain the “e-th power of
the payload” by computing ce · y−1

So, we can use the following optimized encryption algorithm
instead
Encn,N,e(m):

1 Pick s
$←{0, 1}n/2

2 Return c = (s∥m)e

RSA Encryption



Looking Ahead: Implementing RSA

Let us summarize all the algorithms that we need to implement the
RSA algorithm

1 Generating n-bit primes to sample p and q

2 Generating e such that e is relatively prime to φ(N), where
N = pq

3 Finding the trapdoor d such that e · d = 1 mod φ(N)

RSA Encryption


